Links

  • 1999:  Diploma in Physics, University of Bonn
  • 2002:  PhD in Physical Chemistry, Univ. Bonn (Prof. Klaus Wandelt)
  • 2002 – 2004:  Postdoc, Lawrence Berkeley National Laboratory, USA
  • 2005 – 2010:  Emmy Noether Group Leader, Technical University of Munich
  • 2010 – 2016:  Associate Professor in Chemistry, University of Copenhagen, Denmark
  • since 2016:  Professor in Physical Chemistry, University of Bern

Our aim is to understand the fundamental properties that determine the performance of electrocatalysts for particular processes and to build a bridge between fundamental research and realistic applications. 

Our research includes the following areas:

  • Development of concepts for catalyst synthesis based on colloidal methods. Our synthesis concept which we developed in collaboration with S. Kunz from Bremen is labelled Co4Cat - Colloids for Catalysts: Superior Catalysts Solutions. We have the following equipment available for catalyst synthesis: microwave reactor, Schlenk line, rotational evaporator, oil bath, several ovens, ultrasonic equipment (bath and tip), ultraturrax homogenizer, XRD-Mill, pH sensor, dynamic light scattering and zeta potential analyzer, glove box as well as standard equipment such as scales etc.
  • Development of experimental methods and strategies for a reliable electrocatalyst evaluation. We developed the following methods/techniques in our group: Identical location electron microscopy (IL-TEM), experimental procedures for thin film RDE measurements, pressurized RDE setups, gas diffusion electrode setups (GDE), in-situ ATR-FTIR spectroscopy applying finger electrodes. In addition to these developments we use ex-situ and in-situ XAS, in-situ Raman and SHINERS, small angle X-ray scattering (in collaboration), in-situ AFM and STM, high resolution electron microscopy as well as other standard catalyst characterization techniques.  
  • Performance evaluation of model and applied electrocatalysts with respect to activity, selectivity, and stability. We are in particular interested how cooperative effects between support and particles (i.e. metal loading, particle distribution, particle location, etc.) influence the performance.

 For more information visit our website.

For a full list of publications, please see:

Researcher ID: C-3195-2016

ORCID: http://orcid.org/0000-0001-9765-4315

 

 

Publications recorded in BORIS (Bern Open Repository and Information System): 

Journal Article

Hamill, Joseph Martin; Zhao, X. T.; Mészáros, Gábor; Bryce, M. R.; Arenz, Matthias (2018). Fast Data Sorting with Modified Principal Component Analysis to Distinguish Unique Single Molecular Break Junction Trajectories. Physical review letters, 120(1), 016601. American Physical Society 10.1103/Physrevlett.120.016601

Dourado, André H. B.; Munhos, Renan L.; Varela, Hamilton; de Torresi, Susana I. Córdoba; Arenz, Matthias (2018). Influence of the Electrode and Chaotropicity of the Electrolyte on the Oscillatory Behavior of the Electrocatalytic Oxidation of SO2. Journal of physical chemistry. C, 122(2), pp. 1243-1247. American Chemical Society 10.1021/acs.jpcc.7b11460

Fleige, Michael J; Wiberg, Gustav; Arenz, Matthias (2017). Design and Application of External Reference Electrode for Kinetic Studies at Elevated Temperatures and Pressures. Journal of the electrochemical society, 164(7), F821-F824. The Electrochemical Society 10.1149/2.1051707jes

Kacenauskaite, Laura; Quinson, Jonathan; Schultz, Hannibal; Kirkensgaard, Jacob Judas Kain; Kunz, Sebastian Markwart; Vosch, Tom; Arenz, Matthias (2017). UV-Induced Synthesis and Stabilization of Surfactant-Free Colloidal Pt Nanoparticles with Controlled Particle Size in Ethylene Glycol. ChemNanoMat, 3(2), pp. 89-93. Wiley 10.1002/cnma.201600313

Inaba, Masanori; Quinson, Jonathan; Arenz, Matthias (2017). pH matters: The influence of the catalyst ink on the oxygen reduction activity determined in thin film rotating disk electrode measurements. Journal of power sources, 353, pp. 19-27. Elsevier 10.1016/j.jpowsour.2017.03.140

Zana, Alessandro; Wiberg, Gustav; Deng, Y. J.; Ostergaard, T.; Rossmeisl, J.; Arenz, Matthias (2017). Accessing the Inaccessible: Analyzing the Oxygen Reduction Reaction in the Diffusion Limit. ACS applied materials & interfaces, 9(44), pp. 38176-38180. American Chemical Society 10.1021/acsami.7b13902

Neumann, S.; Grotheer, S.; Tielke, J.; Schrader, I.; Quinson, J.; Zana, Alessandro; Oezaslan, M.; Arenz, Matthias; Kunz, S. (2017). Nanoparticles in a box: a concept to isolate, store and re-use colloidal surfactant-free precious metal nanoparticles. Journal of Materials Chemistry A, 5(13), pp. 6140-6145. Royal Society of Chemistry 10.1039/c7ta00628d

Fu, Y. C.; Rudnev, Alexander; Wiberg, Gustav; Arenz, Matthias (2017). Single Graphene Layer on Pt(111) Creates Confined Electrochemical Environment via Selective Ion Transport. Angewandte Chemie (International ed.), 56(42), pp. 12883-12887. Wiley-VCH 10.1002/anie.201705952

Deng, Y. J.; Wiberg, Gustav; Zana, Alessandro; Sun, S. G.; Arenz, Matthias (2017). Tetrahexahedral Pt Nanoparticles: Comparing the Oxygen Reduction Reaction under Transient vs Steady-State Conditions. ACS Catalysis, 7(1), pp. 1-6. American Chemical Society 10.1021/acscatal.6b02201

Speder, Jozsef; Zana, Alessandro; Arenz, Matthias (2016). The colloidal tool-box approach for fuel cell catalysts: Systematic study of perfluorosulfonate-ionomer impregnation and Pt loading. Catalysis today, 262, pp. 82-89. Elsevier 10.1016/j.cattod.2015.09.021

Deng, Yu-Jia; Tripkovic, Vladimir; Rossmeisl, Jan; Arenz, Matthias (2016). Oxygen Reduction Reaction on Pt Overlayers Deposited onto a Gold Film: Ligand, Strain, and Ensemble Effect. ACS Catalysis, 6(2), pp. 671-676. American Chemical Society 10.1021/acscatal.5b02409

Kramm, U.I.; Zana, Alessandro; Vosch, T.; Fiechter, S.; Arenz, Matthias; Schmeißer, D. (2016). On the structural composition and stability of Fe-N-C catalysts prepared by an intermediate acid leaching. Journal of solid state electrochemistry, 20(4), pp. 969-981. Springer 10.1007/s10008-015-3060-z

Zana, Alessandro; Vosch, T.; Arenz, Matthias (2016). The colloidal tool-box approach for fuel cell catalysts: utilizing graphitized carbon supports. Electrochimica acta, 197, pp. 221-227. Elsevier Science 10.1016/j.electacta.2016.03.041

Nesselberger, M.; Arenz, Matthias (2016). InSitu FTIR Spectroscopy: Probing the Electrochemical Interface during the Oxygen Reduction Reaction on a Commercial Platinum High-Surface-Area Catalyst. ChemCatChem, 8(6), pp. 1125-1131. WILEY-VCH 10.1002/cctc.201501193

Kacenauskaite, L.; Swane, A. A.; Kirkensgaard, J. J. K.; Fleige, M.; Kunz, S.; Vosch, T.; Arenz, Matthias (2016). Synthesis Mechanism and Influence of Light on Unprotected Platinum Nanoparticles Synthesis at Room Temperature. ChemNanoMat, 2(2), pp. 104-107. Wiley 10.1002/cnma.201500118

Fleige, M.; Holst-Olesen, K.; Wiberg, G. K. H.; Arenz, Matthias (2016). Evaluation of temperature and electrolyte concentration dependent Oxygen solubility and diffusivity in phosphoric acid. Electrochimica acta, 209, pp. 399-406. Elsevier Science 10.1016/j.electacta.2016.05.048

Deng, Y. J.; Wiberg, G. K. H.; Zana, Alessandro; Arenz, Matthias (2016). On the oxygen reduction reaction in phosphoric acid electrolyte: Evidence of significantly increased inhibition at steady state conditions. Electrochimica acta, 204, pp. 78-83. Elsevier Science 10.1016/j.electacta.2016.04.065

Pizzutilo, Enrico; Geiger, Simon; Grote, J-P; Mingers, A; Mayrhofer, Karl Johann Jakob; Arenz, Matthias; Cherevko, Serhiy (2016). On the Need of Improved Accelerated Degradation Protocols (ADPs): Examination of Platinum Dissolution and Carbon Corrosion in Half-Cell Tests. Journal of the electrochemical society, 163(14), F1510-F1514. The Electrochemical Society 10.1149/2.0731614jes

Arenz, Matthias; Zana, Alessandro (2016). Fuel cell catalyst degradation: Identical location electron microscopy and related methods. Nano energy, 29, pp. 299-313. Elsevier 10.1016/j.nanoen.2016.04.027

Working Paper

Hamill, JM; Zhao, XT; Mészáros, Gábor; Bryce, MR; Arenz, Matthias (2017). Fast data sorting with modified principal component analysis to distinguish unique single molecular break junction trajectories